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ABSTRACT

The mesoscale eddy field shapes the response of the Beaufort Gyre to temporal and spatial fluctuations in
Ekman pumping, such that the eddy diffusivity controls the time scale of the gyre equilibration. Traditional
eddy parameterizations suggest that this adjustment is exponential in time. Here, we use an idealized eddy-
resolving gyre model and a theoretical analysis to identify the existence of a multi-decadal mode of the gyre
variability related to eddy persistence. The mode manifests during the gyre spin-up causing the gyre’s fresh-
water content to overshoot its equilibrium value by 2000 km3, or 15% of the mean. We demonstrate that this
overshoot can be predicted by diagnosing a time scale associated with mesoscale eddy memory, γ ≈ 6 years,
which impacts eddy buoyancy transport.
We propose an improvement to the Gent-McWilliams eddy parameterization that accounts for this eddy mem-
ory. Eddy memory gives rise to an oscillatory, but damped, mode of decadal variability. This mode has a pe-
riod T = 2π

√
Teγ ≈ 50 years, where Te ≈ 10 years is the eddy diffusion time scale. The eddy-memory mode

increases the Ekman-induced freshwater content variance by γ/Te = (50± 15)%; the increase in variance is
greatest for decadal trends in Ekman pumping. The identification of variability associated with eddy memory
highlights the need for better observational constraints of Arctic eddy characteristics. We expect that eddy
memory is a general property of current systems where eddies play a leading order role in balancing the mean
forcing, and thus the the results are broadly applicable to many oceanic regions.

1. Introduction

The Beaufort Gyre, a major anticyclonic circulation fea-
ture in the Arctic Ocean, hosts a substantial fraction of the
overall Arctic freshening (Haine et al 2015). The large-
scale gyre circulation has been directly linked to its fresh-
water content (FWC) via the process of Ekman pumping
that converges relatively fresh surface waters and deepens
the halocline (e.g. Proshutinsky et al 2002). The Ekman
pumping arises due to transient anticyclonic winds that
cause significant gyre variability on interannual and longer
time scales. However, observations indicate that the halo-
cline depth (roughly equivalent to the FWC) varies, but
does not always mimic, the variability in the strength of
the anticyclonic wind stress (e.g Proshutinsky et al 2009;
Giles et al 2012). Understanding and modeling the vari-
ability of the large-scale gyre circulation and the associ-
ated FWC remain a challenging problem.
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The availability of FW sources, the strength of Ek-
man pumping, and interactions with the Atlantic layer
are all factors external to the large-scale circulation that
have been studied with respect to Beaufort Gyre variabil-
ity(Proshutinsky et al 2002; Giles et al 2012; Martin et al
2014; Morison et al 2012; Stewart and Haine 2013; Lique
and Johnson 2015; Lique et al 2015). A recent study, how-
ever, emphasized the internal dynamics of the gyre and
demonstrated that the large-scale halocline deepening due
to Ekman pumping is counteracted by the cumulative ac-
tion of mesoscale eddies (Manucharyan and Spall 2016)
– a dynamical balance similar to that of the Antarctic Cir-
cumpolar Current (ACC) (Marshall and Radko 2003) or
the Weddell Gyre (Su et al 2014). Unlike the ACC, which
is in the eddy-saturated regime with weak variability of
its transport (Tansley and Marshall 2001; Hallberg and
Gnanadesikan 2001; Munday et al 2013), the Beaufort
Gyre appears to be highly sensitive to variations in the
Ekman pumping (Proshutinsky et al 2002; Manucharyan
and Spall 2016). This implies that a continuing melting
of the the sea ice and/or changes in the atmospheric winds
that alter the Ekman pumping would lead to substantial
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Disequilibrium Equilibrium

FIG. 1. Conceptual representation of the mesoscale eddy field illustrating the persistence of eddies in time during the equilibration process (e.g.
during an Ekman-driven spin up). Red eddies have statistical properties that correspond to the equilibrium state, while blue eddies correspond to
an earlier equilibrium state. The transitional eddy field (middle panel) is a mixture of the different type of eddies.

changes in the halocline depth and hence in the freshwater
budget of the entire Arctic Ocean.

Manucharyan et al (2016) point out that the eddy field
plays a key role in gyre variability by providing buoyancy
fluxes comparable to Ekman-driven buoyancy transport.
In addition, they demonstrate that, due to eddies, a large-
scale circulation viewed in an ensemble mean sense (i.e.
averaged over small scale eddies and waves) is a stable dy-
namical system that equilibrates on a time scale controlled
by eddy diffusivity. However, their conclusion relies upon
the use of a conventional Gent-McWilliams (GM) eddy
parameterization (Gent and McWilliams 1990) that takes
the eddy thickness fluxes to be proportional to the large-
scale halocline thickness gradients

v′h′(x, t) =−K∇h(x, t), (1)

where v′ and h′ are the velocity and halocline thickness
perturbations due to time-dependent motions and the over-
bar denotes an ensemble average. A key assumption of the
GM parameterization, which is to be challenged in this
manuscript, is that the eddy fluxes at a particular point in
time and space depend only on the large-scale state of the
ocean at the same point in time and space.

The assumption of temporal and spatial locality can be
questioned from both observational and numerical model-
ing evidence. Observations suggests that mesoscale eddies
(in a form of coherent vortices) can persist in the open
ocean for years, propagating large distances from their
formation regions (Chelton et al 2011). With respect to
the Arctic Ocean, using a numerical model Spall et al.
(2008) discuss how shelf-break eddies propagate away
from their formation region, and can be further transported
by the mean current of the Beaufort Gyre. Manucharyan
and Timmermans (2013) discuss a self-propagation mech-
anism of sub-mixed layer Arctic eddies that are observed
to advect the buoyancy and potential vorticity anomalies
up to 500 km away from their presumed formation regions

(Timmermans et al. 2008). Thus, it is reasonable to as-
sume that a large-scale eddy field does not only depend on
a current state of the ocean but carries a finite memory of
its past states and a history of dissipative processes.

We illustrate the persistence of eddy properties
schematically in Fig. 1. Consider the equilibration of an
ocean that is populated with ‘blue’ eddies that are less en-
ergetic than the equilibrium-type ‘red’ eddies (Fig. 1, left
panel). By different types of eddies we imply the exis-
tence of statistical eddy properties, i.e. sizes, eddy kinetic
energy or eddy transport, that are generated by the mean
flow. While the mean currents are generating the red-type
eddies, the number of blue-type eddies will be decreasing
as they are dissipated or absorbed by the mean flow (Fig.
1, middle panel). Eventually, the ocean will be populated
only with the equilibrium-type ‘red’ eddies (Fig. 1, right
panel). Since the eddy transport is associated with an eddy
field that has a memory, it is important to understand how
it feeds back on the evolution of the large-scale current.

In this manuscript, we use an idealized model of the
Beaufort Gyre (Section 2) to present evidence that eddy-
memory significantly affects the dynamics of the eddying
current (Section 3). We discuss dynamical constraints that
a conventional local in time GM-parameterization imposes
on large-scale ocean dynamics (Section 4) and suggest an
improvement that includes the eddy-memory effect (Sec-
tion 5). Using the new eddy parameterization we discover
a low-frequency internal mode of variability of the large-
scale flow (Section 6). Characteristics of the mode and
its effects on the variability of the ocean circulation are
assessed in Section 7. We summarize in Section 8.

2. Model configuration

We use an idealized model of the Beaufort Gyre in a
configuration identical to the one used in Manucharyan
and Spall (2016) (see appendix A therein). The gyre is
represented by a cylindrical ocean basin (diameter 1200
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FIG. 2. A. Equilibration of the simulated Beaufort Gyre from rest (initial halocline depth is spatially-uniform at 50 m) for the reference case
τ̂ = 0.015 N m−2. The time evolution of the freshwater content (FWC, red curve) and the theoretical prediction based on the GM parameterization
(black dashed curve) is given by the right-hand y-axis. The FWC overshoots its equilibrium value by about 2000 km3. The evolution of the
domain-integrated EKE = = ρ(u2 + v2)/2 (thin blue curve, units kg m−1 s−2) and a 5th order polynomial fit to the EKE time series (thick blue
curve) is shown by the left-hand y-axis. The EKE maximum lags the FWC maximum by about 7 years. B. Equilibrium distribution of EKE (color,
kg m−1 s−2); the maximum EKE is over the continental slope where baroclinicity is strong. Contours indicate the equilibrium salinity distribution
(isohalines between 29 and 34 spaced by 0.5). The equilibrium halocline, S = 31.25, and the halocline location at t = 20 years (time of maximum
overshoot) are given the solid and dashed red curves, respectively. The vertical axis has been squeezed by a factor of 8 in a region below 200 m
where the stratification and EKE are weak.

km, depth 900 m) driven by an anticyclonic surface-stress
τ(r) corresponding to a uniform Ekman pumping. The
fluid dynamical equations are solved using the MIT Gen-
eral Circulation Model in its three-dimensional hydrostatic
configuration. A 4 km horizontal resolution along with
variable in depth vertical resolution between 10m to 60m
is sufficient to permit Rossby deformation scale eddies
(the baroclinic deformation radius is about 20 km in these
simulations). The salinity profile is restored at the edges
of the gyre to a fixed salinity profile that consists of a 50 m
deep surface layer of relatively fresh waters of salinity 29,
followed by a lower layer of salinity 34 (values are chosen
to mimic the hydrography of the Beaufort Gyre (Steele et
al 2001)). Restoring leads to a fixed halocline depth at the
gyre boundaries. This configuration, as highlighted in ear-
lier studies (Manucharyan and Spall 2016; Manucharyan
et al 2016), provides an infinite reservoir of freshwater and
thus the results here should be treated as an upper bound
on the possible fluctuations in the halocline volume . Con-
sistent with Manucharyan and Spall (2016), we include a
continental slope: lateral boundaries are vertical down to
300 m, below which the depth increases linearly to the bot-
tom of the basin penetrating 100 km towards the center of
the gyre (see Fig. 2b). Note that Manucharyan et al (2016)
considered a flat topography case, which is more applica-
ble to the interior of the gyre. However, we demonstrate
in Section 8 that the continental slope is essential for the
gyre dynamics discussed here.

3. Signatures of eddy memory

Spin up simulations are initialized with a horizontally
uniform stratification (50 m initial halocline depth) and
forced with a spatially uniform, temporally-invariant, Ek-
man pumping (corresponding to a linear surface stress
profile τ0 = τ̂r/R). Following the development of the
mesoscale eddy field, the idealized Beaufort Gyre model
achieves a statistically-steady state after several decades
(Fig. 2a). Note that this time scale is significantly longer
than the 5 year long e-folding equilibration in a flat-basin
case considered in Manucharyan et al (2016). The pro-
longed equilibration is entirely due to the presence of a
continental slope in our simulations. The slope suppresses
the development of instabilities and locally reduces the
mesoscale eddy diffusivity (Isachsen 2011; Stewart and
Thompson 2013) that leads to an enhanced eddy diffu-
sion time scale. Note that, because the gyre dynamics are
governed by a halocline thickness diffusion equation, any
localized reduction in the eddy diffusivity would have a
strong influence on the equilibration time scale as well as
on the halocline depth.

The equilibrium corresponds to a vanishing residual cir-
culation that is supported by the mesoscale eddy buoyancy
transport that counteract the Ekman transport. Most of
the eddy kinetic energy is concentrated in the upper layer
corresponding to the first baroclinic mode (see Fig. 2b).
Characteristic eddy velocities in the upper 200 m of the
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gyre are 0.05–0.1 m s−1. These eddies are about 100–200
km in diameter but are relatively weak compared to more
intense but smaller scale sub-mixed layer eddies (about
20km in diameter) commonly observed via the Ice Teth-
ered Profilers (Zhao et al 2014). Suggesting a significant
inverse cascade of energy, these larger scale eddies are
nonetheless responsible for maintaining key properties of
the halocline such as its depth and adjustment time scale.

In these simulations, the FWC, conventionally defined
as a domain integrated measure of salt content relative to a
reference salinity Sre f , is directly proportional to the vol-
ume of water above the halocline V and to the salinity dif-
ference ∆S across the halocline:

FWC =
∆S
Sre f

V, where V = 2π

∫ R

0
hrdr (2)

and h is the halocline depth. While the equilibration of the
gyre FWC and eddy kinetic energy (EKE) can be crudely
viewed as an exponential adjustment, a closer consider-
ation reveals important deviations (Fig. 2a). In particu-
lar, there exists a significant overshoot of the FWC that
lasts for several decades (Fig. 2a, red curve). The maxi-
mum depth of the halocline (at year 30) is up to 10–15 m
deeper than its equilibrium value (Fig. 2b). This corre-
sponds to an FWC overshoot of about 2000 km3 (Fig. 2a),
which is comparable to an observed Beaufort Gyre FWC
increase of 3000km3 over the past two decades (Haine et
al 2015). The halocline deepens beyond its equilibrium
because the eddy field is insufficiently energetic to coun-
teract the Ekman transport for a transient period due to
the weaker eddies generated during the early stages of the
spin up. After the halocline reaches its deepest levels the
eddy field becomes overly energetic generating excessive
thickness fluxes that reduce the halocline depth. This cy-
cle is manifested as an overshoot in the EKE that is lagged
with respect to the FWC by about 5-7 years (Fig.2a, blue
curve).

These lagged overshoots in EKE and FWC are signa-
tures of an oscillatory mode that operates in addition to
the exponential decay. Since we observe only one full os-
cillation before the gyre equilibrates, this mode is heav-
ily damped and needs external forcing to be sustained.
Nonetheless, the existence of this damped mode can not
fit into our traditional understanding of the mesoscale eddy
dynamics as viewed through the lens of the local in time
GM-parameterization.

4. Dynamical implications of GM parameterization

Here we briefly discuss the conventional GM parame-
terization and a key constraint that it imposes on the evo-
lution of large-scale flows. In particular, we focus on the
dynamics of a large class of currents that are forced by
transient Ekman pumping with non-zero mean. When the
diabatic forcing is small compared to the mean Ekman

pumping, the time-averaged state corresponds to a vanish-
ing residual mean circulation. Transient forcing, however,
can produce significant deviations from the equilibrated
state.

The GM-parameterization operates under the assump-
tion of slowly-evolving ocean dynamics such that at any
given moment in time and space the mesoscale eddy field
can be considered in equilibrium with local, large-scale
currents. In particular, it assumes that the eddy stream-
function ψ∗ = K(s)s is proportional to the time-dependent
halocline slope s(t) and an eddy diffusivity K that can be
slope-dependent (Visbeck et al. 1997), but is typically not
time dependent. Near its mean state the perturbation eddy
streamfunction ψ ′∗ = K′s0 +K(s0)s′ can be expressed as

ψ
′∗(r, t) = K̃(r)s′(r, t), (3)

where K̃ is the constant in time eddy diffusivity for the
perturbations

K̃(r) =
[

dK
ds

s0 +K
]

s=s0

. (4)

and s0(r) is the equilibrium halocline slope (primes de-
note perturbations from equilibrium). Note, that the eddy
diffusivity for a linearized system can be different from
the background diffusivity i.e. K̃ 6= K(s0). Thus, if one
assumes a linear dependence of the eddy diffusivity on
halocline slope (Visbeck et al. 1997), which is appropri-
ate for the Beaufort Gyre (Manucharyan et al 2016), then
K̃ = 2K(s0).

The halocline thickness evolution under the GM-
parameterization obeys a forced diffusion equation:

ht =
1
r

(
K̃rhr

)
r +wE , (5)

where wE(r, t) is the time-dependent Ekman pumping. We
have used cylindrical coordinates, where r is the radial
coordinate. A full derivation of the halocline tendency
equation for perturbation variables can be found in Ap-
pendix A of Manucharyan et al (2016). The eddies act
as a thickness diffusion because GM parameterization as-
sumes the eddy thickness flux to be proportional to the
halocline slope (ψ∗ ∼ hr).

Equation 5 allows to get further insight into the halo-
cline volume dynamics. Consider the least damped eigen-
function h̄ of the diffusion operator on the right hand side
of Eq. (5)

1
r

(
rK̃h̄r

)
r =− h̄

Te
, (6)

where Te (inverse of the smallest eigenvalue) defines the
gyre equilibration time scale. Manucharyan et al (2016)
demonstrate that higher mode eigenfunctions of this eddy
diffusion operator are highly damped (damping time scale
increases quadratically with the number of zero crossings)
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and hence only the least damped eigenfunction can sig-
nificantly contribute to changes in the halocline volume.
Thus, integrating Eq. 5 over the domain, keeping only a
contribution from the least-damped eigenmode, and using
Eq. 6 we arrive at

V̇ =−V
Te

+WE , (7)

where the over-dot indicates the time derivative and WE
is the Ekman transport (domain integrated Ekman pump-
ing projection onto the least damped eigenmode). Eq.
7 demonstrates that under the GM-parameterization the
large scale currents are constrained to equilibrate expo-
nentially i.e. no internal oscillations are possible. Numeri-
cal simulations, however, demonstrate that an eddying cur-
rent can significantly deviate from exponential equilibra-
tion (Fig. 2) exhibiting oscillatory behavior that cannot be
captured by the local in time GM-parameterization.

5. Eddy memory parameterization

Here we introduce an improvement to the GM parame-
terization by accounting for the eddy-memory and validate
its relevance in the eddy resolving model.

a. Parameterization

We make a key assumption that the eddy streamfunction
has a finite memory of past states

ψ
∗(t) =

1
γ

∫ t

−∞

K̃s(t ′)exp
(
− t− t ′

γ

)
dt ′, (8)

where γ is the eddy-memory time scale and this defini-
tion is applicable for sufficiently small perturbations away
from the mean state such that K̃ does not depend on slope
perturbations s. This integral form implies that the present
eddy transport (at time t) consists of contributions of past
transports (at times t ′ < t) with weights that are exponen-
tially decreasing with time towards the past. Contributions
from past transports quantify the eddy persistence (see Fig
1 and discussions thereof). Note, that in the limit of no
memory, γ → 0, or in equilibrium, s(t) = const, this pa-
rameterization (Eq. (8)) is identical to the conventional
GM-parameterization (Eq. (4)).

Since K̃ is a defined by the mean state and hence is in-
dependent of time, our parameterization can be written in
the following way

ψ
∗(t) = K̃s∗(t) (9)

s∗(t) =
1
γ

∫ t

−∞

s(t ′)exp
(
− t− t ′

γ

)
dt ′. (10)

where we have defined an effective slope s∗ that contains
memory of past transports and governs the eddy transport.
Alternatively, one can define an effective eddy diffusivity

Ke f f = K̃s∗/s such that ψ∗ = Ke f f s. The effective diffu-
sivity, however, is not a physically relevant quantity and it
can be inconvenient to use in practice. For example, Ke f f
is unbounded when eddies generated in the past are still
contributing to the transport while a present slope is neg-
ligibly small (i.e. Ke f f → ∞ when s→ 0). However, an
extremely large Ke f f is misleading since a physically rele-
vant eddy transport (ψ∗= Ke f f s) is finite. Hence, Ke f f can
not be directly interpreted as a measure of the mesoscale
eddy activity. We thus choose to proceed with our anal-
ysis using the effective slope s∗ (Eq. 10) as a physically
relevant and singularity-free quantity that defines the eddy
thickness transport.

Differentiating Eq. (10) with respect to time leads to

ds∗

dt
=− s∗

γ
+

s
γ
. (11)

Integrating Eq. 11 forward in time is an efficient and sim-
ple method of calculating s∗ in numerical models as it
avoids heavy calculations of the integral in Eq. (10) at
every time step. Note, that the eddy memory can lead to
periods of up-gradient thickness transport when s∗ and s
have different signs. However, Eq. 11 implies that the
eddy memory does not affect steady or slowly-evolving
mean currents for which s∗ ≈ s and hence the long term
average of the eddy thickness transport is always down-
gradient.

b. Diagnosing eddy memory

We now quantify the impact of the eddy memory as it
relates to the eddy thickness transport in the eddy resolv-
ing Beaufort Gyre model. We diagnose time series for the
eddy streamfunction ψ∗(t) by calculating the eddy thick-
ness fluxes during the gyre spin up simulation. Fig. 3a
demonstrates that ψ∗(t) and s(t) when plotted against each
other have a relationship characteristic of a spiral sink.
First, the eddy field and halocline slope do not equilibrate
following a conventional straight line path predicted by the
GM-parameterization, e.g. the blue curve has large devia-
tions from the straight line in Fig. 3a. Instead, away from
equilibrium the eddy streamfunction evolves more slowly
compared to the halocline slope (blue curve is above the
dashed black curve in 3a). Second, the diagnosed ψ∗ and
s loop approaches the equilibrium in a spiraling trajectory
with a quickly decaying radius of the spiral (see the black
arrows around 0,0 in Fig 3a).

We do not know the value of γ a priori, but we can at-
tempt to infer it by assessing the correlation between the
eddy streamfunction and the effective slope defined by Eq.
10. Calculations show that there is indeed an optimal value
of γ ≈ 6 years that enhances the correlation (Fig. 3b, blue
curve). Throughout the gyre equilibration ψ∗ is better ap-
proximated as a linear function of s∗ rather than s (Fig.
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3a), with the best linear fit of K̃ = 150 m2s−1 (Fig. 3a,
black dashed line).

The inferred eddy diffusivity K̃ is smaller than the value
reported in Manucharyan et al (2016) because of the con-
tinental slope that in our model suppresses baroclinic in-
stabilities. The continental slope also plays a major role
in enhancing the eddy memory, since in the interior of
the gyre γ ≈ 2 years (Fig. 3b, red curve). This suggests
that there might be a relation between the magnitude of
eddy memory and the eddy adjustment time scale that is
inversely proportional to the eddy diffusivity. Thus, for re-
gions with high eddy diffusion the eddy memory is small
and vice versa.

6. Emergence of the Eddy-Memory mode

Now that we have established the physical basis and di-
agnosed the eddy memory in the gyre we proceed to re-
veal the newly emerging dynamics. Applying our modi-
fied GM parameterization, the perturbations in halocline
depth h with respect to the equilibrium or mean state of
the gyre evolve following thickness diffusion equation

ht =
1
r

(
K̃rh∗r

)
r +wE , (12)

h∗t =− h∗

γ
+

h
γ
, (13)

where we have introduced an effective halocline depth h∗

as h∗r = s∗. The two terms on the right hand side of Eq.
12 represent the divergence of the eddy thickness flux and
the Ekman pumping. Note that we consider axisymmet-
ric solutions in cylindrical coordinates and all variables in

Eqns. 12-13 are perturbations from the equilibrium state
corresponding to forcing by the mean Ekman pumping.

Combining the equations above to eliminate h∗ we ob-
tain

htt +
1
γ

ht =
1
γ

[
1
r

(
rK̃hr

)
r

]
+
(

ẇE +
wE

γ

)
. (14)

Note that the model diagnosed eddy memory is spatially
inhomogeneous, but for simplicity of the analytical analy-
sis we are assuming a constant parameter γ which should
be interpreted as an effective memory that affects the bulk
gyre dynamics. In the absence of forcing (wE = 0) this
equation describes the equilibration of the gyre by expo-
nentially damped waves. To further illuminate the dynam-
ics lets consider the evolution of the halocline volume V .
Domain integrating Eq. 14, keeping only a contribution
from the least damped eigenmode, and using Eq. 6 we
arrive at

V̈ +
1
γ

V̇ +
1

γTe
V︸ ︷︷ ︸

Damped oscillator

= ẆE +
WE

γ︸ ︷︷ ︸
Ekman forcing

, (15)

where the over-dot indicates the time derivative and WE is
the Ekman transport (as in Eq. 7).

Eq. 15 illuminates the core internal dynamics behind
the equilibration of the halocline – an externally forced
damped oscillator. The ratio of the eddy memory to the
eddy adjustment time scale (γ/Te) determines whether so-
lutions are either over-damped (non-oscillatory) or under-
damped (oscillatory). Note that in the absence of mem-
ory (a limit of γ → 0) Eq. 15 becomes identical to an
exponential decay equation 7 derived using a conventional
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value of FWC∗ is given by the dashed red curve (FWC∗ is defined by Equation 2 using h∗ instead of h). B. The relationship between eddy memory
(γ) and the eddy diffusion time scale (Te) as diagnosed from a series of numerical simulations of the Beaufort Gyre forced by different Ekman
pumping. Te diffusion time scale is smaller for large Ekman pumping because of the larger eddy diffusivities. Dashed curves show boundaries
between the dynamical regimes as determined from Eq. 17: γ/Te = {0.25,0.5}.

GM-parameterization. However, if the eddy memory is
sufficiently large (γ > 0.25Te, as shown below) the system
oscillates with the frequency ω0 expressed as:

ω0 =

√
1

γTe
, (16)

and hence the period T0 = 2π
√

γTe would be proportional
to the geometric mean between the eddy memory and eddy
diffusion time scales. Using our model-based estimates
for the Beaufort Gyre (γ ≈ 6 years, Te ≈ 10 years) we ob-
tain a period of the EM-mode T0 ≈ 50 years. The damp-
ing time scale for the oscillations is given by 2γ = 12
years (much shorter than its period) and hence the mode
is highly damped requiring continuous external forcing to
be sustained. While the EM-mode has a distinct multi-
decadal period, its amplitude has a significant response to
a wide range of forcing frequencies because of its strong
damping. We speculate that the transience of the atmo-
spheric Beaufort High pressure system can efficiently en-
ergize this mode.

Solving Equation (15) for the initial conditions from the
spin up simulation (shown in Fig. 2a), taking WE = 0
since there are no Ekman pumping perturbations during
the spin up, and using γ = 6 years (as implied by Fig. 3b,
red curve) significantly improves the theoretical prediction
of the numerically diagnosed evolution of FWC (see Fig.
4a). In particular, our new theory captures the amplitude

and duration of the overshoot in addition to the overall ex-
ponential equilibration. Furthermore, it captures a lag be-
tween the peaks in FWC and the eddy transport (observe
that FWC∗ is proportional to ψ∗ in Fig. 4a). Since the in-
clusion of the EM-mode dramatically improves the repre-
sentation of the halocline dynamics we proceed to explore
several of its major implications.

7. Role of the EM-mode in halocline dynamics

a. Halocline equilibration

The equilibration of the FWC anomalies is represented
by damped oscillations that can be expressed in the form
of complex exponentials V ∼ exp(−λ t) where the real part
of λ corresponds to the amplitude decay rate and the imag-
inary part of λ corresponds to the oscillation frequency.
Plugging this solution into Equation (15) we get two pos-
sible values:

λ1,2 =
1
2γ
± 1

2γ

√
1− 4γ

Te
. (17)

If γ > 0.25Te the solution oscillates as λ has a imaginary
part. These oscillations decay in amplitude with time and
for arbitrary initial conditions their decay rate corresponds
to the smallest of the real parts between the two character-
istic equation roots (Eq. 17). The inverse of the decay rate
is the time scale of the gyre equilibration Teq which de-
pends on both γ and Te. In the absence of memory (γ→ 0)
λ = 1/Te and hence Teq = Te consistent with an exponen-
tial gyre equilibration that was discussed in Manucharyan
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FIG. 5. A. Ekman-induced evolution of the FWC anomalies with eddy memory (red curve) and without eddy memory (blue curve), as simulated
by Equations 15 and 7 respectively. Ekman transport (WE ) time series are represented by a white noise process with zero mean. The eddy diffusion
time scale is the same for both runs (Te = 10 years) and eddy memory γ = 6 years. The difference between the two time series is given by the gold
curve. B. Power spectral density of FWC variability with eddy memory (red curve) and without it (blue curve); the spectra are indistinguishable
from the theoretical predictions by Equations 18 and 19 respectively. The gray area emphasizes the enhanced variance due to the eddy memory.

et al (2016). The presence of memory γ/Te < 0.5 leads
to a reduction of the equilibration time making the gyre
more stable despite the presence of the oscillations (by in-
creased stability we imply larger decay rates). In fact, hav-
ing a memory γ = 0.25T0 reduces the equilibration time by
a factor of 2. Thus, the gyre dynamics is an under-damped
oscillator if γ > 0.25T0 and is a faster-equilibrating over-
damped oscillator for γ < 0.25T0. For γ > 0.5T0 the equi-
libration is slower as compared to the memoryless limit.

Our numerical simulations conducted for a wide range
of Ekman pumping forcing suggest that there is a relation
between the two time scales. Most of the diagnosed points
lie close to γ = 0.5Te – a boundary at which the gyre equi-
libration time Teq = 2γ = Te (as inferred from Eq. (17))
would be exactly equal to the eddy diffusion time scale.
Indeed, stronger Ekman pumping forcing leads to shorter
time scale because of the large eddy diffusivities. How-
ever, a strong flow would lead to a faster reduction in the
persistence of the eddy field due to enhanced eddy-mean
flow interactions. The opposite occurs for weak Ekman
pumping. A mechanistic understanding of the parameter
regime where the ratio γ/Te is constant remains an open
question.

b. Enhanced halocline variability

The FWC of the gyre in our surface-stress driven simu-
lations is directly proportional to the halocline volume V .
Consider now the variability of V for the gyre forced by
transient Ekman pumping by numerically simulating Eq.
15. We take the parameters γ = 6 and Te = 10 years as
diagnosed from the eddy resolving model. For simplicity

we represent W (t) as a white noise process that has equal
energy at all frequencies and highlight the impact of the
EM-mode by comparing a simulation to the case of γ = 0.

Figure 5a compares the FWC evolution with and with-
out memory. The amplitude of FWC variations is larger
with the EM-mode due to the overshoots that are particu-
larly prominent when decadal trends are present. For ex-
ample, near years 70 and 130 the EM-mode gives an ad-
ditional 2000 km3 of FWC anomaly for a gyre that would
otherwise have 4000 km3 oscillation in FWC. That is a
50% increase in the amplitude of FWC, and comparable
to the observed FWC increase of 3000 km3 in the Beau-
fort Gyre (Haine et al 2015).

It is perhaps more illustrative to assess the effects of
EM-mode in a spectral space. According to Eq. 15 the
spectrum of V depends in the eddy memory in the follow-
ing way

|Ṽ |2 = σ
2 ω2 + γ−2

(ω2−ω2
0 )2 +ω2γ−2 , (18)

where σ2 represents the spectral energy of the Ekman
transport WE (a white noise process with equal energy dis-
tribution for all frequencies) and ω0 was defined in Eq.
(16). In the memoryless limit (γ = 0) we recover an ex-
pected red-noise spectrum

|Ṽ |2 =
σ2

ω2 +T−2
e

when γ → 0. (19)

For comparison both spectra (with and without memory)
are plotted in Fig 5b demonstrating an enhanced energy at
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all frequencies. The two spectra approach the same val-
ues at very low frequencies (for which s∗ ≈ s) as well as at
high frequencies for which Ekman pumping dominates the
dynamics and eddies do not play a significant role. Note,
that the frequency ωmax of peak EM-mode energy is sig-
nificantly shifted from ω0 towards lower values; in par-
ticular, Eq. 18 dictates that ωmax = γ−1 = ω0/

√
2 when

γ = 0.5Te. However, it is the maximum relative increase
of spectral energy that occurs at ω = ω0.

We can assess a total variance of V by taking the integral
of its power spectral density over all frequencies

Var(V ) = 2
∫

∞

0
|Ṽ |2dω =

Teσ2

2

(
1+

γ

Te

)
. (20)

Here the integral has been calculated exactly via the
Cauchy’s residue theorem making use of the integrand
having 4 simple poles on a complex plane z = ±0.5i/γ±
0.5/γ

√
−1+4ω2

0 γ−2. Equation (20) implies that the EM-
mode enhances the variance by a fraction γ/Te ≈ (50±
15)%. Note that the standard deviation is a square root of
variance such that the contribution of the EM-mode is ap-
proximately 0.25γ/Te. Overall, the standard deviation of
FWC time series is about 2000 km3 without and 3000 km3

with the EM-mode. Thus, Fig. 5 together with our analyti-
cal calculations demonstrate a clear enhancement of FWC
variability due to the EM-mode. This extra variance is not
accounted for in climate models that implement local in
time eddy parameterizations.

8. Summary and discussions

An Ekman-driven eddy-resolving model of the Beau-
fort Gyre was used to assess the large scale impacts of
the eddy memory. The key manifestations of the eddy
memory are the overshoots in halocline slope and a lagged
development of the eddy kinetic energy (Fig. 4). These
features can not be represented by the conventional GM-
parameterization that assumes time locality of eddy fluxes.

Overshoots in FWC of the simulated Beaufort Gyre
reach 2000 km3 – a magnitude comparable to FWC vari-
ations observed over the past two decades. Note, because
there are no sufficient observations of the eddy field in the
Arctic Ocean previous attempts to explain the gyre vari-
ability via Ekman pumping likely carry a significant un-
certainty due to the eddy thickness fluxes that are unac-
counted for.

Using a Transformed Eulerian Mean theory we di-
agnose the time-dependent eddy streamfunction ψ∗ and
show that it is more closely related to the effective slope s∗

that takes into account the history of ocean evolution (Fig.
3a) than to the present value of isopycnal slope s (as as-
sumed by the GM-parameterization). With Eq. 8 we have
introduced an improvement of a GM-parameterization by
relaxing its key assumption of time-locality. The improved

parameterization reproduces well the transient behavior of
the eddy resolving gyre model (Fig. 4a).

Our theoretical analysis of the proposed parameteriza-
tion reveals that the eddy-memory leads to an emergence
of a decadal variability mode that has a period 2π

√
Teγ

(approximately 50 years for the Beaufort Gyre). Despite
the EM-mode operating on multi-decadal time scales it
increases the overall isopycnal slope variance by a frac-
tion of γ/Te ≈ 0.5 that stays relatively constant for a wide
range of mean forcing (Fig. 4b). This suggests that in
eddy-dominated flows there might be an inverse relation
between eddy-memory γ and eddy diffusivity K̃ (since
Te ∼ R2/K̃).

Note that we have identified the bulk memory of the
current as it relates to the cumulative thickness transport
of the eddy field. Nonetheless, specific dynamics of indi-
vidual eddies that can lead to a current having a memory
remains unclear. We expect the extent of memory to de-
pend on both the eddy dissipation rate and on the intensity
of the inverse energy cascade – processes that can suppress
the eddy transport. However, those would inevitably affect
not only eddy memory but also the eddy diffusivity.

In order to emphasize the role of eddy memory, we have
made several simplifications. We have used a memory as
a parameter characteristic of the entire current. However,
the spatial inhomogeneity of the eddy diffusivity implies
that eddy memory might also be spatially variable. In-
deed, Fig. 3b demonstrates that the memory is signifi-
cantly enhanced over the continental slope – a region with
weakened eddy diffusivity. The halocline evolution equa-
tion (12) is valid for a general case of spatially-dependent
eddy memory but its analytical treatment are too convo-
luted to highlight the essential dynamics. Instead, we have
simulated the evolution of equations (12) and (13) in case
of an enhanced memory near the coast and confirmed that
our key conclusions still hold (not shown). Note that the
continental slope occupies only a small portion of the gyre
(about 100 km wide); however, the bulk memory that has
been diagnosed from FWC evolution is close to the local
memory at the continental slope. This implies that the en-
hanced eddy memory even in a localized regions impacts
the interior gyre dynamics.

Another potentially important factor that was omitted in
our theory is vertical diffusion (a diabatic process). Mix-
ing is likely to be important over continental slope at the
boundary where there are sources of water masses. In the
Arctic Ocean vertical diffusivity estimates are small (order
of 10−6 m2 s−1 to 10−5 m2 s−1) but it might still play a role
in water mass transformations. In particular, the enhanced
mixing near gyre boundaries can restrict the availability of
freshwater sources and thus limit the temporal variations
of the FWC. In our numerical model we have used a rela-
tively high estimate of vertical mixing of 10−5 m2 s−1 and
we have confirmed that the amplitude of the eddy-memory
mode enhances when the mixing is reduced.
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The climate modeling community is constantly seeking
to improve predictions of the mean climate. However, it
is just as important, especially in the context of recent cli-
mate change, to simulate and understand low-frequency
climate variability, which is largely dictated by ocean dy-
namics. We have demonstrated here that mesoscale eddies
provide yet another mechanism of long-time scale vari-
ability for strongly baroclinic currents such as the ACC or
the Beaufort Gyre. This effect may be amplified by poten-
tial feedbacks that involve atmospheric buoyancy fluxes
that are in many cases coupled with the ocean dynamics.
We thus argue that the implementation of eddy parame-
terizations that account for eddy-memory and an assess-
ment of their implications for coupled climate dynamics is
a necessary step forward in climate modeling.
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